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We develop a variational theory for a dipolar condensate in an elongated (cigar shaped)
confinement potential. Our formulation provides an effective one-dimensional extended
meanfield theory for the ground state and its collective excitations. We apply our theory to
investigate the properties of rotons in the system comparing the variational treatment to a full
numerical solution. We consider the effect of quantum fluctuations on the scattering length at

which the roton excitation softens to zero energy.
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1. Introduction

Bose-Einstein condensates of highly magnetic atoms, such as
chromium, erbium, and dysprosium [1-3], realise a dilute
quantum system with long-ranged and anisotropic dipole—
dipole interactions (DDIs). Recently experiments with such
dipolar condensates have observed a roton excitation [4, 5],
i.e. a local minimum in the excitation dispersion relation of
the condensate at a non-zero wave vector. The roton excita-
tion, originally introduced in the study of super fluid Helium
[6], has been of significant theoretical interest in dipolar
condensates where it emerges from an interplay between the
DDIs and confinement (e.g. see [7—15]). Much of the theor-
etical attention has focused on the case of a system confined
to a planar (pancake) geometry with the dipoles aligned
along the tightly confined direction. Experiments instead have
realised roton excitations in an elongated (cigar) geometry
with the dipoles oriented along one of the tightly confined
directions (e.g. see figure 1). While the planar case can
have cylindrical symmetry, the elongated system does not
and in general requires a full three-dimensional (3D) calcul-
ation. Such calculations for the system ground states and its
collective excitations demand significant computational
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resources, mostly arising from the large and dense numerical
grids required to carefully resolve the singular DDI potential.

The theoretical description of a dipolar condensate is
usually provided by meanfield theory. However, recent
developments in the field have revealed that quantum fluc-
tuations can play an important role in the regime of strong
DDiIs, for example leading to the formation of stable quantum
droplets and supersolids (e.g. see [16-23]). Extended mean-
field theory includes the leading order effects of quantum
fluctuations within a local density approximation [17, 18, 24].
In this formalism the stationary states of the system are
described by the extended Gross—Pitaevskii equation (eGPE),
with the collective excitations described by the associated
Bogoliubov—de Gennes (BdG) equations [25, 26].

In this paper we develop an approximation that allows us
to reduce the 3D extended meanfield theory to a tractable one-
dimensional (1D) form. Our approach is to use a Gaussian
ansatz to describe the tightly confined transverse directions,
and by integrating this out we obtain an effective 1D form of
the theory, albeit with some variational parameters from the
Gaussian. Such an approach is a rather obvious path to take
and has been used for non-dipolar condensates (e.g. see [27]).
However, for the dipolar case the Gaussian cannot be inte-
grated out against the DDI potential to yield an analytic result
for the interaction term, except for the special case where the
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Figure 1. Schematic of the system geometry we consider in this
paper: a condensate of atoms with magnetic dipoles aligned along
the y-axis by an external magnetic field, and with tighter confinement
in the xy-plane relative to the z-axis.

Gaussian is isotropic. An important result of this paper is that
we introduce a useful approximate analytic result for general
Gaussian. Based on this we develop a simple 1D effective
theory for the stationary states and the collective excitations
of the system. We emphasise that this description is for a 3D
dipolar condensate, and is not applicable to the true 1D
regime where interactions remain weak compared to the
confinement and the quantum fluctuations take a different
form [28]. Indeed, in the regime of interest (e.g. where rotons
occur) the interaction energy scale is typically larger than the
transverse confinement energy and the transverse degrees of
freedom must be treated variationally. Furthermore, in this
regime magnetostriction effects can be large, causing the
Gaussian to distort appreciably from the geometry imposed
by the confining potential. This occurs because the DDIs are
anisotropic and the energy of the system is reduced by having
more particles in a relative head-to-tail orientation.

We compare our results from the variational 1D theory to
full numerical solutions of the 3D problem for both ground
states and the excitation spectrum. We use our theory to predict
the value of the s-wave scattering length (readily adjusted in
experiments using Feshbach resonances) where the roton mode
goes soft (i.e. to zero energy), and the associated value of the
wave vector of the soft mode. By comparing to results that
exclude the quantum fluctuation term we can assess the effect
of quantum fluctuations on the roton properties.

The outline of the paper is as follows. In section 2 we
introduce extended meanfield theory and our approach for
simplifying it to an effective variational 1D theory. The main
results are presented in section 3, before we conclude in
section 4.

2. Formalism

2.1. Extended meanfield theory for dipolar condensates

2.1.1. 3D eGPE. The system of interest is a dilute Bose gas
of atoms with a magnetic moment g, polarised along the y-
axis. The extended meanfield theory for this system identifies
stationary states of the matterwave field ¥, as solutions of the
eGPE pu¥y = L3pV, where

/2V?
m

Lip¥Yy = [— + V) + Px) + 7QF|‘I’0|3]‘1’0- (1

Here p is the chemical potential and
o) = [d U - x) )P, @)

is the interaction term, with interaction potential
3 2
Ur) = g,8(r) + ifg(l - 3y—2), (3)
4mr r

where the contact interaction coupling constant is g=
4rh2a;/m, ag is the s-wave scattering length, the DDI
coupling constant is g, = 4n/i%ag;/m, and agy =
m#oﬂi / 1277472 is the dipole length. This theory includes
the leading order quantum fluctuations in the local density

approximation, where the coefficient of this term is
[18, 24, 29]
32 |a} 3 5
YOQF = ——8s4| — a1+ Efdd)s “4)
3 s

with ¢4 = agq/a,. The atoms are taken to be confined by an
external potential V (x) = %mZV:x’y’zwg v2. Here we focus
our attention on the regime used in experiments to observe
roton excitations: a cigar shaped trap with w,, w, > w,
(including the pure tube case with w, = 0). The energy
functional associated with the 3D eGPE is

Ef@@#

h2V2
o T V(x) + 50 + %’YQFI\I[()P]\II&

)

2.1.2. BdG theory of excitations. The collective excitations of
this system are Bogoliubov quasiparticles, which can be
obtained by linearising the time-dependent GPE i/ W=
L3pV about a stationary state as

U = e—i;lt/ﬁ|:\I;0 + ZO\V Uye—ie,,z/h _ )\jv;keieft/ﬁ,)]’ (6)

where ), is a small complex amplitude. The quasiparticle
modes U, V, and energies ¢, satisfy the BAdG equations [25]

£3D —u+ X —-X (Uu) — ¢ (U,,) 7
X —(Lpp —p+XN\V,) T\

where X is the exchange operator given by

Xf= W [AU G — X)fGOUHE) + Sorl Bl (®)

2.2. Reduction to an effective 1D eGPE

2.2.1. General approach. We approximate the 3D solutions
in the elongated trap to be of the separable form
PYp(x) = Yo(z) x(p), where x is the transverse mode
function with p = (x, y) being the radial coordinate vector
and f dp |x> = 1. Integrating out the transverse directions
we obtain the 1D eGPE operator for the axial wavefunction
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The effective interaction term is
D.(2) = F HO.(k) FoA ol ), (12)

where we have introduced the effective 1D k-space interaction
kernel
_ dk, -
O.k) = [ 001F PP (13)
(2m)
In the above results U(k) is the Fourier transform of
equation (3), given by

- k?
Ok) = g + gdd(3k—§ - 1], (14)
F.A{f} denotes the 1D Fourier transform f(z) — f (k;) and

Fplf} denotes the 2D Fourier transform f(p) — fk ). The
assomated energy functional takes the form

E:fdz wﬁ[&

+ [z i@ + Dorulvl oo (15

2.2.2. Anisotropic Gaussian approximation. Here we
introduce a convenient analytic form for x. Our choice is
the Gaussian

e—(n>+y?/m) /21

Xo(p) = ——,

16
N (16

of mean width [ = \/m , and anisotropy 1 = [, /I, where [,
(1,) is the 1/e half width of |y, |> along the x-axis (y-axis). We
use o to collectively denote the variational parameters o = {/,
1}, which are determined by minimising the system energy.

Using x, we can analytically evaluate key terms in the
1D theory. First we denote &, evaluated with y,, as

7? 1 2w}
—(n + 5) + m—(7 + w\,n) a7

E N, n) =
(& m 4mi? 4

Similarly, v, — v, = We are unaware of a general

5w /3°
analytic result for U, (k,) evaluated using x,, which we denote

U.(k.)4nl®/gaa

0 1 2 3 4 5 6 7 8
k1
0.06 T T T T T T T
(b) ~
E‘ max, {4(;22 Unum Uo }
M 0.04 | 1
19
e e AR T TR PP PP
< Lottt
¥ 0.02F. 1
< K
g
O 1 L 1

Figure 2. (a) Comparison of the (dotted lines) analytic result (18) to
(solid lines) numerically calculated Uy, (obtained by numerically
evaluating equation (13) using x — x,) for the effective k-space
kernel. Results shown for several values of 7 and for g; = 0. The
exact result for = 1 is also shown (dashed line). (b) The maximum
absolute error of the approximation U, compared to the Uy, over the
krange shown in (a), (in units of g,, /47rl ).

as U, (k.). However, we have obtained the useful approximate

result
- 1}, (18)

Oy — o S| 1QZPEC0D + 1]
Y2t 2ql? 147

with Ei being the exponential integral®, and Q, = % nt/4.

2.2.3. Justification for equation (18). For the particular case
of an isotropic Gaussian (i.e. 7 = 1) equation (18) is exact
(see [30-33]). While a general analytic result for n = 1 is
unavailable, we can calculate the limiting behaviour

8 2—1

L 220 g,
7.‘.2 i Z
Oy (k) = =52 e (19)
2l —oup ke— o0

We have arrived at result (18) by inspection and numerical
experiment: it satisfies the required limiting behaviour and
reduces to the exact isotropic result at n = 1.

In figure 2 we compare the accuracy of equation (18) to a
full calculation of the kernel obtained by numerically
evaluating (13) with x — x,. To ensure the numerical
calculation is accurate it is performed using a large and dense
two-dimensional transverse grid of points and using a cutoff
k-space DDI potential to avoid finite size boundary effects
(e.g. see [34]). The results in figure 2 show that while our

% This can also be written in terms of the incomplete Gamma function I'
using Ei(—x) = —I'(0, x) for x > 0 (see [30]).
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approximate analytic result (18) is not identical to the
numerical result, it is generally in very good agreement over
a wide range of 7 values (i.e. 0.2 < 7 < 20). Note that
ground states with 1 < 1 can occur due to the confinement
(i.e. when wy > w,), and are also favoured by the interactions
when g,; < 0, which can be arranged by rotationally tuning
the dipoles [35, 36]. We expect that for the regimes of interest
the error associated with making the Gaussian approximation
is much more significant than any additional error introduced
by using equation (18) to describe its interactions.

2.2.4. Variational theory. Here we summarise the results
developed in section 2.2.2 and succinctly present the
variational 1D eGPE theory that forms the main formalism
result of this paper.
The axial orbital 1), satisfies the 1D eGPE:
wibo = Ly, (20)
where
nt & 1 2
-+ omw?? + B,(2) + 3.1
S e @) + garltl’, 21)

with  gor = Yor7,» and @, is evaluated according to

L, =&,

equation (12) but using U, in place of U..

Since L, depends on X, we also need a procedure to
obtain the parameters {/, n}. To do this we consider the total
system energy per particle:

EYo; I, nl = &, n) + Evo; 1, 1], (22)

where

2
Elv L) = = [dz s
[0 7] SN gQF|¢0| o)

1 ﬁz d2 1 2 1

+—fdz ol ——— + -mwi? + -8 (z
- wo( S A 3% [
is the energy functional for the v, orbital, and N = f dz |9l

For w, =0 the axial wavefunction can be uniform
o — /n, where n is the linear density. In this regime the
energy per particle (22) reduces to

Eull,m) = E,Lm) + 51T, (0) + Fggen®’?, (24)

i.e. the ground state is determined by minimising a simple
nonlinear function.

2.2.5. Quasi-1D theory. Predictions for 1), can be made
within the quasi-1D approximation using the procedure
outlined for the variational theory, but with / and n held
fixed to the values for the harmonic oscillator ground state of
the transverse confinement, i.e. for 2 = / /m\/m and

N = Jw/wy, with & = 7% (w, + wy)/2. We denote the
harmonic oscillator state as xp, and the associated k-space
kernel as Uy,. This quasi-1D approximation will only be
accurate when the interaction terms in &£, remain small
compared to &,.

2.2.6. Effective 1D form of the excitations. Making the same
shape approximation for the transverse form of the excitations

[14] we set U, (x) = u, (z) X, (p) and V, (x) = v,(2) X, (p) and
integrating out x_(p) the BdG equations (7) reduce to

‘ca - M + XO' _Xa Uy uy
( X, (Lo — o+ XU))(VU) = eu(vy), (25)

where X, f = o F (T, (k) Fo{tho f} + gord f-

In general the BdG equations need to be discretised and
solved numerically, however for the case of a uniform ground
state an analytic solution can be obtained. Here the excitations
are plane waves of momentum /7, i.e.u,(z) — ukze“‘fz,
v, (2) — vi.elk, 6, — e(k,), with excitation energy

e (k) = \Jeo(k)[eok:) + 2nT, (k) + 3gen™?],  (26)

where (k) = 7%%k2/2m.

3. Results

3.1. Numerical methods

In this subsection we briefly outline the various numerical
methods used to solve for the results we present later.

3.1.1. Uniform cases. For cases without axial trapping
(w, = 0) we restrict our attention to the regime where the
ground state is uniform and specified by the linear density 7.

The variational 1D eGPE theory reduces to minimising
the nonlinear function (24) for [ and 7. The BdG excitation
energies are then directly given by evaluating equation (26).

The 3D eGPE reduces to the determining the transverse
mode x(p). We do this by discretising x(p) on a two-
dimensional numerical grid and apply discrete Fourier
transformations to apply the kinetic energy operator with
spectral accuracy, and to evaluate the interaction term ®. For
high accuracy the 3D k-space kernel is cutoff in the transverse
direction to the range of the numerical grid (e.g. see [34, 37]).
The eGPE is solved using a gradient flow technique [38]. The
excitations for this case are of the form of plane waves along
z, reducing the BdG equations to a 2D form that can be solved
using large-scale eigensolvers (i.e.the implicitly restarted
Arnoldi method).

3.1.2. Fully trapped cases. For w, = 0 the variational theory
(including the quasi-1D theory) involves solving for ¢y on a
1D numerical grid. We use a set of equally spaced points
allowing us to use discrete Fourier transformations to evaluate
the kinetic energy operator and the interaction term ®,. To
improve accuracy we implement an axial cutoff of the k-space
kernel U,: this is obtained by Fourier transforming the real-
space interaction potential [30] restricted to the z-spatial range
of the grid used for the numerical calculation. The orbital
is solved using a gradient flow technique for given values of /
and 7, thus determining a minimum energy solution of &,
(23). An optimisation scheme is used to adjust / and 7, then
1 is solved with the new parameters, and this procedure
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Figure 3. Comparison of the variational (red lines) and 3D eGPE
(black lines) solutions for a uniform infinite system. The 1/e density
contours of the transverse modes of the 3D eGPE x and the
variational approach Yy, for (a) a; = 120a( and (b) a; = 95ay. The
harmonic oscillator ground state X, is shown for reference (blue
lines). In (c) and (d) we compare the transverse mode profiles along
the x (dash—dot) and y (lines) axes for the cases given in (a) and (b),
respectively. (e) The effective 1D k-space interaction kernel obtained
from the various transverse functions for a, = 120a, (dashed lines)
and a, = 95a, (solid lines). The 3D eGPE result U, is obtained by
evaluating equation (13) using . The variational U, and the
harmonic oscillator U, results are obtained from equation (18).
Results for 164Dy using a4q = 130.8 ay, with w,, = 27 x 150 Hz,
w,=0,and n = 2.5 x 103 ym~L.

iterates until the minimum of the full energy functional (22) is
found.

The 3D ground states are obtained using 3D numerical
grids and discrete Fourier transforms A cylindrically cutoff k-
space kernel is used to improve accuracy of the ® evaluation.
The ground states are found using a conjugate gradient
technique to minimise the energy functional (also see
[34, 39)]).

3.2. Uniform ground states

In figures 3(a)—(d) we compare results obtained from the 3D
and variational theories for the transverse density profile of a
14Dy condensate at a linear density of n = 2.5 x 103/um
for two values of a,. The lower value of scattering length
considered (a; = 95ay) is close to where the roton excitation
softens to zero energy and becomes dynamically unstable (see

section 3.4). For reference the harmonic oscillator ground
state (i.e. quasi-1D result) is also shown. Here we observe that
both the 3D and variational eGPE solutions have a much
larger transverse width than the harmonic oscillator ground
state since the system parameters are outside quasi-1D
regime®. We also note that while the confining potential is
isotropic the condensates exhibits magnetostriction, i.e. sig-
nificantly elongates in the y-direction compared to the
x-direction.

In figure 3(e) we compare the effective 1D k-space
interaction kernel for the various theories. While the uniform
ground state only depends on the value of the kernel at k, = 0
(24), the excitations are sensitive to its non-zero k, behaviour
(26). Our results show that our approximate kernel U, closely
matches that obtained from the full 3D eGPE solution. In
comparison, the quasi-1D kernel based on the harmonic
oscillator ground state (see section 2.2.5) is a poor
approximation.

3.3. Fully trapped ground states

In figure 4 we present results for ground states with axial
confinement. The line density profiles of the solutions reveal
that the variational theory is in reasonable agreement with the
3D eGPE solution, although it generally tends to have a lower
peak density. Except for small atom numbers N, for which the
interaction effects are negligible, the quasi-1D case is in poor
agreement with the other theories. A significant difference
between the variational and the 3D result arises because
the variational solution has the separable form WU(x)=
¥0(z2)X,,(p), and thus has the same transverse profile for all z.
At higher N we can see that this not a good approximation to
the 3D solution: the transverse profile at z = 0 (where the
density is highest) is more strongly affected by interactions
(larger average width and anisotropy) than it is for higher
values of |z| (see inset to figure 4(a)). For the case of con-
densates with contact interactions an effective 1D theory has
been developed that allows the transverse profile y,, to vary
slowly with z (see [27]). Such a theory could be developed for
the dipolar case, although we do not pursue this here (also see
[40]). In figures 4(b) and (c) we compare the ground state
energy, observing that over the wide parameter regime con-
sidered the variational prediction for the energy is typically
within a few percent of the full 3D solution.

3.4. Uniform system excitations: roton softening

In figures 5(a) and (b) we compare the predictions of the
variational and 3D theories for the spectrum of a uniform case
as a, is varied. In these results we see that a roton (i.e. a local
minimum in the excitation dispersion relation) appears for
a, ~ 95a, and lowers in energy as a, is further decreased.
Our calculations predict that the roton hits zero energy at the
critical value of scattering length a with af = 91.6a,

(a = 93.3a) according the variational (3D) theory for the

3 We also note that the case in figures 3(b) and (d) has na; = 12.6, well-
satisfying the requirement na; > 1 established in [28] for the quantum
fluctuations to be described by the 3D formalism we use here.
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Figure 4. Comparison of line density profiles n(z) = f dp|¥(x)[?
and energies for a '**Dy condensate in a trap with Wyy = 2T X
150 Hz, w, = 27 x 20 Hz, for a; = 100a, and various atom
numbers N. (a) The line density along the z-axis calculated using the
3D eGPE (black), variational (red) and the quasi-1D (blue) theories.
Inset shows the 1/e density contours (relative to the density at

p = 0) in the p-plane for the various theories for N = 5 x 10*. The
contour of the 3D eGPE solution is evaluated at z = 0 (black) and
z = 15 pum (grey). (b) Energy per particle of the three theories and
(c) error in the energy of the variational and the quasi-1D theories
relative to the 3D eGPE results.

density considered. In general we find that the variational
theory predicts a lower value of @ than the 3D result (also
see figures 5(c) and (e)). For a, < as* the uniform state is
dynamically unstable.

Identifying the local minimum in the dispersion relation
with the roton energy ¢, and wavevector ky, (see
figure 5(a)), we can monitor the behaviour of the roton as ay
varies in figures 5(c) and (d). The roton energy is seen to
soften to zero as (a, — a.*)!/? for a, above but close to a.* [4].
The roton wave vector tends to increase as a, decreases, and
obtains the value k.’ at the critical point a*. We observe that
the variational theory predicts k% to be larger than that
obtained from the 3D theory, however the k. values of both

400
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< 200 105aq
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Figure 5. Excitation dispersion relations obtained from the

(a) variational (dark blue) and (b) 3D (light blue) BdG theories for
various values of a; as labelled. In (a) the black circle indicates the roton
coordinates (kyo, €ro) for a; = 95ay. In (b) the higher excitations bands
for a; = 150a are shown (black dotted lines). The (c) roton energy and
(d) roton wavevector as a, changes for the variational (dark blue line)
and 3D (light blue dots) theories. In (c) the critical value a* at which the
roton energy goes to zero is indicated for each theory with an arrow and
the fit function a\/a, — a (with « a fitting parameter) is also shown
(dashed lines). In (d) the value of the critical roton wavevector (k%)
when ¢, = 0 for a;, = a is indicated by an arrow for each theory. The
roton critical values (€) a* and () k.5, as the system density changes.
We compare the variational (lines) and 3D (symbols) theories both
including (dark blue line for variational, light blue circles for 3D) and
neglecting (red line for variational, magenta crosses for 3D) the quantum
fluctuation term. Results for '**Dy with w, , = 27 x 150 Hz, and in

(a)~(d) the density is n = 2.5 x 10° pm™".

theories are similar at the same a; values (see figure 5(d)). We
note that our results show that the roton wave vector occurs at
a value slightly higher than the inverse harmonic oscillator
length along the dipole direction, i.e. \/mw,/% = 1.56/ pm,
similar to the observations of experiments [4].

In figures 5(e) and (f) we examine the values of . and
k.: for a range of system densities. We also include results
without the quantum fluctuation term. For small n, the
quantum fluctuations have a small effect and the theories
make similar predictions*. However, in general we find that
a’ is larger when the quantum fluctuation term is neglected.

4 The results for n < 500/pm on figures 5(e) and (f) have nag; < 1, and the

3D treatment of quantum fluctuations is inappropriate. A quantitative
treatment of this regime is outside the scope of this work.
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We understand this arises because the quantum fluctuations
effectively act as a repulsive interaction and tend to stabilise
(i.e. lift the energy) of the roton. Thus with quantum fluc-
tuations a lower a, value is needed to destabilise the con-
densate. We also find that ¢ as a function of n has a
maximum when quantum fluctuations are included. In con-
trast without quantum fluctuations a. monotonically increases
with n, slowly approaching the value a,, in the large density
limit.

4. Conclusions and outlook

In this paper we have reported the development of a simple
theory for a dipolar condensate in an elongated confining
potential. Our main result is the effective 1D variational eGPE
for stationary states, and the associated BdG theory of its
collective excitations. This theory is practical to solve with
modest computational resources, yet provides a good quan-
titative description of the full 3D solution.

In the application of our theory we have focused on the
typical density, interaction and trap parameter regimes used in
current experiments. For example, the rotons observed in the
experiments of Chomaz et al [4] occurred (prior to structure
formation occurring) in an elongated system with linear
densities in the range 2 x 10°—4 x 103 ym~'. This regime
is well-beyond where the quasi-1D approximation is valid.
Using our theory we have predicted the scattering length a.*
and roton wave vector k.5, at the point where roton softens to
zero energy as a function of system density. Our results show
that quantum fluctuations lower the value of a* and cause it to
have a non-monotonic dependence on density. These predic-
tions could be investigated in future experiments and may relate
to the non-monotonic dependence of the value of a, where the
supersolid transition was observed (see figure 1(g) of [41]).

Here we have restricted our focus to the regime where the
system does not develop density modulations, which tends to
occur at lower values of a, (e.g. after the roton softens and
causes a dynamic instability). Such modulations can indicate
the onset of a supersolid state, as has been observed in three
recent experiments working with dipolar condensates in
elongated trapping potentials. So far theoretical studies of the
ground states and their excitations of these modulated states
required large scale numerical methods for cases with (see
[22, 23, 41-44]) and without (see [15]) axial confinement.
Our theory can treat such modulated states, but a full and
systematic treatment of this is beyond the current scope and
will be examined in future work.
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